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Liquid-liquid phase transition for an attractive isotropic potential with wide repulsive range
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We investigate how the phase diagram of a repulsive soft-core attractive potential, with a liquid-liquid phase
transition in addition to the standard gas-liquid phase transition, changes by varying the parameters of the
potential. We extend our previous work on short soft-core ranges to the case of large soft-core ranges, by using
an integral equation approach in the hypernetted-chain approximation. We show, using a modified van der
Waals equation we recently introduced, that if there is a balance between the attractive and repulsive part of the
potential this potential has two fluid-fluid critical points well separated in temperature and in density. This
implies that for the repulsivéttractive energyUg(U,) and the repulsivéattractive rangewg(w,) the relation
Ugr/Uxxwr/Wy, holds for short soft-core ranges, whilgy/U 5> 3wg/w, holds for large soft-core ranges.
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I. INTRODUCTION We have recently shown through molecular dynamics

The phase diagram of a typical monatomic substance i§¥ID) simulations[15,19 that a system of particles interact-
comprised of solid and fluid phases, with the fluid phase"d through an isotropic potential with an attractive well and
separating below the critical point into gas and liquid phases? repulsive component consisting O.f a.hafd core plus a finite
The prototype of such substances are sintpée, argonlike shoulder may possess a high-density liquid phase and a low-

fluids. Interparticle interactions in these systems can be afi€nsity liquid phase. Potentials with such characteristics

propriately described by the well-known Lennard-Jones poyvere used to model interactions in a variety of systems in-

tential. Other simple models—such as those described by t pdmg liquid metals, metallic mixtures, .electrolytes and .C.OI'
hard-sphere square-well potential or by the hard-spher oids, as well as anomalous liquids, like water and silica
Yukawa potential—exhibit similar phase diagrafdd. All 44_53'. L .
these potentials consist of a short-range harshly repulsive !N SPiteé of the simplicity of the model, the physical
core plus a longer-ranged attraction. New insights into thdn€chanism that causes the liquid-liquid transition for a po-
relationship between phase diagrams and interparticle intef€ntial with a hard core plus a repulsive shoulder and an

action emerged recently from the finding that when the rangémractive well is not easy to assess since it arises from an

of the attractive component is sufficiently small, the liquid Mterplay of the different components of the pair interaction.
phase and the gas-liquid critical point become metastablC disentangle the role of each component it is necessary to

with respect to crystallizatiof2—9]. Shouldered potentials— MVestigate the dependence of the phase diagram on the po-
b y (-9 P _tential parameters. This task was undertaken in [Raf],

potentials with a hard core and a finite repulsive shoulder X
exhibit more exotic phase diagrarfis0]. Simulations and where the results of MD calculations performed for several

theories showed that such potentials may give rise to no sets of parameters were presented. The resulting behavior of

trivial phase behaviors, such as isostructural solid-solid tran{—x/e critical points was interpreted through a modified van der

sitions and liquid-liquid transitionEL0—22]. The key to this  Vaals equatioiMVDWE) [20], a mean field approach as-

complex phase behavior resides in the peculiar penetrabilitfuming that the effect of the repulsive shoulder at different
of the repulsive core, a feature that gives rise tdemsity- ~densitiesp and temperature$ can be taken into account by
dependeneffective interaction. an effective excluded volume depending on bptland T.

The possible existence of a liquid-liquid phase transitionHowever, the analysis was limited to cases where both the
for single-component systems with a standard gas-liquigoft-core range and the attractive range are smaller than the
critical point has received considerable attention in recenbard-core range and the total interaction range does not
years. Direct evidence of this phenomenon has been olexceed 2.8. Nevertheless, there are cases such as biological
served experimentally in liquid phosphory&3,24] and solutions and colloids where the soft-core range could be as
triphenyl phosphit¢25]. Experimental data consistent with a large as the hard-core or even lar¢b]. For this reason,
liquid-liquid phase transition have also been presented foand to gain a better understanding of the role played by each
other single-component systems such as wa@r2§g, silica  component of a soft-core attractive potentials, we here ex-
[29,30, carbon[31], aluminate liquidq32], selenium[33], plore how the phase diagram changes when the soft-core
and cobalt[34], among otherg35]. A liquid-liquid critical range exceeds the hard-core diameter.
point has also been predicted by simulations for specific We use an approach based on integral equations, which
models of supercooled wat¢B6—3§, carbon[39], phos- can be considered in many respects as an intermediate one
phorus [40], supercooled silicd29,41,42, and hydrogen between simulations and MVDWE. In fact, solving an inte-
[43]. gral equation is far less time consuming than a simulation,
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but is by no means as accurate. On the other hand, a micr: 5’2
scopic theory is not based on the assumption typical of meaQ‘16 [ U
field approaches, such as the MVDWE, that particles expe—

R
rience a uniform attractive potential. Hence it is intrinsically ~ 4| I |
more accurate. 3L b
In particular, we use the hypernetted-ch@itiNC) integral
B A
-0.5

0
U
equation for the radial distribution functid®4] to estimate
the position of the critical points. We perform an extensive
investigation in the space of the potential parameters, cor ,[ /\
sidering an extremely ample number of combinations. This
makes it possible to frame previous results into a wider per mo 05

spective and allows a better understanding of the physice L T~oe {05
mechanism leading to a liquid-liquid transition in one- JAS——————0s
component fluids. N i et
Our results show that the high-density critical point can  ° %2 04 08,598 o oz o4 06 o8
be found only when there is a balance between the attractive pa
part and the repulsive part of the potential. In Re0] this FIG. 1. Inset: General shape of the attractive soft-core potential

balance was expressed through the mean fédength of seq in this work, with hard-core distanag soft-core distance,
attraction a parameter related to the second virial coeffi-interaction range, attractive energy,, and repulsive energy.
cient, proportional to the attractive rangg/a and inversely  panels: Instability line of the HNC equation for the potential in the
proportional to the repulsive enerdyg, for fixed attractive  inset with wa/a=0.2: (a) wg/a=1 and (from top to bottom
energyU,. Here we find an approximate relation betweenug/U,=-1 (potentialA), —0.5, 0, 0.2, 0.4, 0.6, 0.8, & (potential
Ur/U, and wa/wg (Wherewg is the repulsive rangethat  B); (b) wg/a=0.8, andUg/U,=0.2, 0.3, 0.4, 0.5.

quantifies the ideal balance between the repulsive and the

attractive components of the potential more effectively. Our«sqft core”), which can be overcome at large pressure. More
results show that the liquid-liquid phase transition can _beprecisely, our pair potentidl(r) [Fig. 1(a), insef consists of
found in systems with small repulsion if the attraction is 4 hard core of radiua, a repulsive square shoulder of height

small as well, withUg/Up*Wa/We, and in systems with ) extending fromr=a to r=b, and an attractive component
wide repulsion, withUg/ U 3wa/wg. Typical systems with  paing the form of a square well of energyz<0 extend-
these characteristics are colloids, where the effective repuri',]g from r=b to r=c (herer is the interparticle distange

sion and attraction can be regulaféd]. Choosinga andU, as length and energy units, respectively,
this potential depends on three free parameters: the width of
Il. THE ATTRACTIVE SOFT-CORE POTENTIAL the soft corevg/a= (b—a)/a, the width of the attractive well
wx/a=(c—b)/a, and the soft-core enerdyg/U,.

A soft-core potential with an attractive interaction at large  Our aim is to understand how the position of the critical
distances was first proposed, and studied through an exagbints in the thermodynamic plane changes upon varying
analysis in 1D, by Hemmer and Stg#4] to understand the parameter values. In Ref20] we investigated, using MD
possibility of the solid-solid critical point in materials such simulations, a number of cases with<a andw,<a, and
as Ce and Cs. Other soft-core potentials with an attractivgresented a mean field approach with an MVDWE to inter-
well were proposed and studied with approximate methodgret the results. However, simulatiofisoth MD or Monte
or with numerical simulations to rationalize the properties 0fCar|o) of potentia|s WithWRBa require very |arge computa-
liquid metals, alloys, electrolytes, colloids, and water anomation times, so we study this case with integral equatitns
lies [15-22,45-58 the HNC approximationwhich represents a compromise be-

The peculiarity of such potentials is the presence of twaeen accuracy and economy.
repulsive length scales. This feature is typical of systems
with core-corona architecture such as, e.g., star polymers.

However, isotropic soft-core potentials have also been proqj|. THE HYPERNETTED CHAIN INTEGRAL EQUATION

posed as effective potentials resulting from an average over APPROACH

the angular degrees of freedom for systems where the dis-

tance of the minimum approach between particles depends The spatial distribution of a system of particles may be
on their relative orientation. Thus, in some respect, they havéonveniently described by the radial distribution function
been consideref0,52,53 as simplified models of complex 9(r) [56], a quantity directly measurable by scattering experi-
anisotropic interactions, such as those resulting from the hyments and related to the thermodynamic properties of the
drogen bonding between water molecules. fluid. One of the theoretical approaches most used to calcu-

The model potential considered in this paper is similar tolate this function is represented by integral equations. These
that investigated in Refd15,16,19-2] It is an isotropic ~are based on the Ornstein-Zernika2) relation between the
pair potential with two characteristic short-range repulsivetotal pair correlation functiom(r)=g(r)-1 and the direct
distances: one associated with the hard-core exclusion beorrelation functionc(r), which describes the contribution
tween two particles and the second with a weak repulsiowoming from the direct interaction between two particles
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separated by distance Both h(r) and c(r) are unknown c—a (henceforth calleghotential A whereas, whetJg— oo,
functions, so to solve the OZ relation one needs another rghe potential has a hard core of radluand a square well of
lation between these two functiorislosure, which is nec-  width c—b (potential B. When the shoulder height increases,
essarily approximate. Depending on thsurg one gets starting fromUg/U,=-1, the potential gradually changes
different equations. Examples include the Percus-Yevick, thérom potential A to potential B. In any intermediate configu-
HNC equations, the mean spherical approximatipt8A),  ration, the potential has a penetrable finite repulsive shoul-
etc.[56]. Their specific performance depends on the kind ofder.

intermolecular interaction as well as on the thermodynamic The IL is shown in Fig. &) at fixed shoulder and well
conditions, with no clear overall superiority of one theory. widths (wg/a=1, w,/a=0.2) for several values of the shoul-
Moreover, all theories are affected by a thermodynamicafler heightUg. In the two limiting cases corresponding to
inconsistency that can be partially removed through suitablg@otentials A and B, the IL exhibits a single maximum corre-
modifications of the equatior(svhich, however, makes their sponding to a phase diagram with a single liquid-gas critical
solution considerably less rapid point, a well-known behavior for a fluid of hard spheres with

For each integral theory there is a region in th& plane  an attractive well. The position of the critical points in the
where no solution can be found, i.e., for amythere is al  p,T plane is considerably different in the two cases. The
below which it is not possible to solve the equation. Thiscritical point corresponding to potential B is at a lower tem-
defines an instability lin€IL) in the p-T plane. Usually, the perature than that corresponding to potential A, due to the
IL cannot be identified with the spinodal line of the fluid weaker attraction, i.e., shorter attractive raegé of poten-
since, except for the MSA, it is not characterized by a trulytial B with respect to the largest attractive rangea of
diverging compressibility58]. In any case, due to the ther- potential A. Furthermore, the critical density for potential B
modynamical inconsistency of the theory, the maximum ofis smaller than that for potential A and rescales as the hard-
the spinodal line does not coincide with the maximum of thecore volume(a/b)? of the two potentials. We observe that,
binodal line, so is not possible to obtain an unequivocal esunlessb/a=1, this rescaling overshadows the shift of the
timate of the critical point. critical point toward higher densities due to the decrease of

In spite of the above limitations, knowledge of the IL may the attraction rangée.g., see Appendix A in Ref20]).
allow us to estimate the topology of the region of spinodal As Ug increases, starting frotdg/U,=-1 (potential A,
decomposition of the fluid. In particular, it was found that thethe IL moves toward lower temperatures as a consequence of
IL of the HNC equation for the potential defined in Sec. Il, the overall reduction of the interparticle potential’s attractive
with parameterswg/a=1, wa/a=0.2, andUg/U,=0.5, is component. At the same time, the IL undergoes a change
gualitatively similar to the spinodal line calculated throughwhich eventually yields a line with two maximsee the
MD calculations[19]. More precisely, the density and tem- enlarged view in Fig. @)]. This peculiar topology of the IL
perature of the low-density critical point estimated throughbecomes most evident for intermediate valuesUg{0.4
the HNC equation are in satisfactory agreement with simu=Ug/U,=<0.6). As Uy increases further, the second maxi-
lation results, while the density of the second-critical point ismum disappears and again the shape of the IL becomes more
overestimated by the theof§9]. This is not surprising since and more similar to the shape typical of the hard-core square-
the theory is an approximate one and becomes progressivelyell potential. Thus, whemwg andw, are fixed, two maxima
less accurate as the density increases. However, the ability gfe observed in the IL only for a finite randgl®<Ug
the HNC equation to give account of the presence of two< U™
critical points is, within the well-known limitations of the In this range of values, ddg increases, the densipy of
theory, quite remarkable since the potential considered givege low-density maximum becomes smaller, while that of the
origin to a phase diagram that is definitely unusual for simpleother maximump, slightly increases. The critical tempera-
fluids. Thus, studying the modifications of the IL as the po-tures T, and T,, respectively, corresponding to these two
tential parameters are varied can yield approximate, yet usgnaxima, decrease—this behavior being more evident for the
ful, information on the phase behavior of the fluid. In our second maximum. These results agree with the behavior
calculations, we obtain the solution of the system formed byfound with MD simulations for the two critical pointge-
the OZ relation plus the HNC closure through a numericalported in Fig. 9g, 9h of Ref.20]). Thus for increasindJg,
iterative procedure using a grid witlvi=2048 discrete the two maxima move away from each other both in density
points,r,=mdr, with m=1,...,M, and ér/a=0.01. and temperature.

In Fig. 1(b) we show the behavior of the IL fowg/a
=0.8 andw,/a=0.2. Comparing these results with those
shown in Figs. {a) and 2Zb), we observe that for fixet,

To disentangle the role of each component of the interparandUg, aswg increasesp; andT; are almost constant and at
ticle interaction, we vary the parameters of the potential one&variance with MD results, bys, decreases ant, increases
at a time. First we keep the widthg of the repulsive shoul- in agreement with the MD simulatior{see Figs. 9d, 9e of
der and the widthw, of the attractive well fixed, and study Ref.[20]).
the behavior of the instability of the IL by letting the height ~ We now consider a fixed shoulder widtivg/a=1) and
Ug of the repulsive shoulder vary. The considered values ofeveral values of the well widtfw,/a=0.1, 0.2, 0.3, 0.4,

Ug range from tJ, to ©. WhenUg/U,=-1, the potential 0.5, 0.6§. We calculate the IL for each of them, letting the
consists of a hard core of radiasand a square well of width heightUg of the shoulder varyFigs. 2a)-2(f)]. The values

IV. INSTABILITY LINES FOR LARGE REPULSIVE RANGE
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of the shoulder heightg for which two maxima are ob- dynamically consistent integral equatipb6]. Once again it
served increase withv,. By increasingw,, the second maxi- appears evident that the main flaw of the HNC equation is to
mum is less and less evident and for large valuesvofa  overestimate the critical density of the second critical point.
[Figs. 4e) and Zf)] the second maximum is not observed for However, a direct comparison of HNC results with those
any Ug. For small values ofv,, the decrease of the attraction obtained through MD simulations can be disappointing. For
flattens the curve and the second maximum becomes difficutome of the parameter sets investigated in Fig. 9 of [Rél.
to observgFig. 2@)]. the IL shows only one maximum, while for others the two-
For IL's with two maxima and the samggz/a=1 andUgy ~ maxima topology is barely observable. As an example, we
but differentw,, both maxima move toward higher tempera- show the IL corresponding to the parametavg/a=0.5,
tures for increasingv,, due to the increased attraction. More- wa/a=0.5 with 1.0sUg/U,<1.7 (Fig. 4). It was not pos-
over, by increasingv,, p, becomes smaller whilg, does not  sible to directly analyze the valudg/U,=2 (considered in
vary significantly. This behavior agrees with that predictedRef. [20]) since, in this case, the HNC cannot be solved at
by MD simulations for the two critical pointshown in Figs.  high densities before any considerable increase of the com-
9a, 9b of Ref[20]). pressibility can be observdih general, this occurs when the
We next consider a potential with a wider repulsive shoul-finite repulsion is considerably stronger than the attragtion
der (wg/a=1.5 and several values of the well widflwa/a  The results obtained at slightly smaller valueslyf show,
=0.5, 1.0, 1.5, 2.6 The behavior of the Il(Fig. 3 for vary-  however, a non-monotonic behavior of the IL, consistent
ing Ug is quite similar to that observed in the previous caseswith the presence of a liquid-liquid critical point.
For fixed wg and w,, the IL shows only two maxima in a
finite range of values obg; these values increase witin,
and, for large values of/,, the two-maxima topology is not V. DISCUSSION
observed regardless of the valuelgf [Fig. 3(d)]. The range
of values ofw, in which we observe two maxima is larger ~ The overall behavior of the IL's is synthesized in Figa)s
with respect to the cassg/a=1. which shows, for different values of the shoulder width
For one particular set of parametefwg/a=1.5, wa/a  (Wg/a=0.6, 0.8, 1.0, 1. the points in the(w,,Ug) plane
=0.5 andUg/U,=0.9), it is possible to compare the results where two maxima are found by using the HNC approxima-
obtained using the HNC equation with the phase diagrantion. We observe that both rangeswyf and Ug where two
calculated through a theoretical approach based on a thermotaxima are observed increase with.
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proximate the interval of values &ff" < Ug< UR*for each
wg and w, in Fig. 5@ with its middle pointUg=(Ug®
+UR"M/2 [Fig. 5b)]. Next, we recall from Ref[20] the
relation between the potential’s parameters andstiength

of attraction A a parameter related to the second virial co-
efficient v, and increasing withw,/a and decreasing with
Ugr/U,. In particular, asT —« it is

2 A
=—a’-——+0(T?), 1
V= A SO M
with
A= UAUA_ URUR, (2)
2 3 3
va= S l@rwerw)’ - @rwl, (3
and
27
vr=—l@+ wg)® - a%]. (4)
The relationUg/Up=va/vg—Al(Upvg) can be rewritten as
Ur__ Vsc {_ A, 3RHcWa +3iC<W_A>2
Upn Vsc=Viel UaVse Rsc a Sscl\ a
Ve Wa |3
+ ﬁ(i\) :| , (5)
where
2 2 a2 R
Vie= _7TaS:VSC: —Tr(a+WR)3,S-|—C - —Z’LC
3 3 Ssc (@+Wg)* Rgc
a
= 6
a+wg ©)

are the volumes, and the ratios of the surfaces and radii of
the hard cordHC) and the soft coré¢SC), respectively, and

Al depend only on the parametef/a. Hence, at a fixed

value ofwg, the functionUg(w,) in Eqg. (5) only hasA as an
unknown parameter.

This MVDWE prediction can be verified by using the
HNC results. In Fig. B), Eq. (5) is used to fit the values of
U;(WA) resulting from HNC calculations for different values
of wg, with A as the only fitting parameter. As expected from
Eq.(5), whenw,/a< 1, the leading order itV 5(w,) is linear,
while whenw,/a>1 (corresponding to largesg), the non-
linear behavior is evident. Figurellh also shows that, by
increasingwg, the coefficients of the third-degree polynomial
in w, decrease as predicted by E¢S). and (6).

Moreover, the fitting parametek in Fig. 5b) shows a
nonmonotonic behavior witlvg. This is consistent with the
MVDWE prediction in Ref.[20] that 9A/ dwg may have dif-
ferent signs, depending on the other parameters. Therefore,
Egs.(5) and(6) give us a fair description of how the three
parameterd)g, Wi, andw, are related to each other when the
phase diagram has two critical points at positive pressure and

finite temperature. However, Eq®) and(6) do not help us

understand why the phase diagram has an accessible liquid-
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liquid critical point only for limited ranges oW, and Ug,
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approximation we can assume that0 at least forwg/a
> 1, which is consistent with the conclusion of Rgf0] that, 1
in order to have two accessible critical points in the fluid 0
phase, the attractive and repulsive part of the potential mus
compensate, i.elJyuvp=Ugvg or A=0.

Hence, from Eqs(3) and (4) we get the approximation

given a value ofwvg. s e w/a=0.6
To gain some insight into this point, we observe that if we r —
. o ) <4 O Wp/a=038
plot Eq(5) with A=0 and no fitting parametef$ig. 5c)], I W, fa=1.0
we get a rough approximation of the calculatdd that be- Qna s ® "R ) 8
comes fair for the largest/r. This suggests that as a first ‘5, [ A Wpla=1.5

Ug _ (a+wg+wy)® - (a+wg)?®
Up (a+wg)d-ad

)

U*R/IJA

PO L N L B

First we observe that to get an accessible liquid-liquid criti-
cal point,Ug/U,~ O(1) is the relevant case. Indeed, the case 0

=0, Eq.(7) givesw,=0, leading to a simple hard-core po- 1
tential with no attractive well. Hence we consider the case = [+, | . | . | .
with Ug/Ux~ O(2).
Next, we observe that for increasimgy(wg— =), Eq. (7)
Yr = (1 + Wa

with Ugr/U,>1 at high-enougil and small-enougl® cor- sl S
responds to an effective attractive potential with no repulsive - A
shoulder and a hard core at a distanceasfwg with no Q i ///z"
liquid-liquid phase transition, or with a liquid-liquid phase ~%, 3| i A
transition at vanishing and very highP (see MD resultsin %t ot

Figs. 9h, 9i in Ref.[20]). On the other hand, foJg/U, = 2r i

)

“_.I.I.I.I.'_ﬁ'_'l__.l.l.l.IFW.__,I.I.I.IW_

(=]
o
W

1
W A/a

becomes
5 FIG. 5. (@) Symbols mark the combinations of the potential's
) 1 ®) parameters where the instability line, calculated by the HNC ap-
Un a+wg ’ proach, shows two maxima, suggesting the presence of two fluid-
fluid critical points. Sets witlwg/a=0.6 (circles were investigated
from which the conditiorUg/Ux=3w,a/Wg follows for large  for 0<Ug/U,<2 and Oswa/a<1; sets withwg/a=0.8 (square}s
Wg/W,. This relation is reasonably satisfied by HNC data forand with wg/a=1.0 (diamond$ for 0<Ug/Ux<1.2 and 0
wgr/a=1 (wa/a=0.4 forUg/U,=0.9) and is better approxi- <w,/a=<0.6; sets withwg/a=1.5 (triangles for 0<UR/U,<6
mated forwg/a=1.5 (wa/a=0.5 for Ug/U,=0.9. We can and O<sw,/a<3. Parameters outside these regions have not been
deduce from these considerations that to get a phase diagranvestigated(b) Middle pointsUg of intervals ofUg in panel(a).
with two accessible critical points in the fluid region, the Symbols are as in panéd). Error bars represent the intervals in
three parameters of the potential should be related by theanel (a). Lines are one-parameter fits with E(p): for set 2

approximate relation E(8) for wg/a> 1, which reduces to (square the fitting parameter i#\/(UaVsc)=0.31 (dashed ling
Wa=Wg/3 for Ug/U,=1. for set 3 (diamonds the fitting parameter iA/(UpVso)=—0.84
(dot-dashed ling for set 4 (triangleg the fitting parameter is
A/(UpVso)=2.23(dotted ling. Since we only have three points for
set 1, to avoid a fit with a large indeterminacy on the parameters we
The purpose of the present investigation has been to una_rbitrarily choseA/ (UpVso) =1 (solid line) to show that the data are

derstand the role that the different components of the inter(—:onSIStent with EqES). (€) Lines are Eq(5) evaluated withA=0 for

particle interaction play in the physical mechanism underly—each set. Symbols and lines are as in pabp!
ing the liquid-liquid phase transition in one-component
systems. Thus we have investigated the phase diagram asserms of computational time, consisting of integral equations
ciated with an isotropic pair potential with an attractive well in the HNC approximation. It is important to stress that the
and a repulsive shoulder, by analyzing for which combina-drawbacks of the HNC equation are not critical for our pur-
tions of the potential parameters the phase diagram showsoses. Indeed, we find that the theory, though at best only in
two critical points in the fluid phase. In a first pag@0] we  qualitative agreement with MD simulations, correctly repro-
used MD simulations and found limited ranges of the paramduces the trend according to which the simulated critical
eters so that the liquid-liquid phase transition was accessiblgoints move in the, T plane as the potential parameters are
We also presented a general description based on thehanged20]. On this basis, we use the theoretical results to
MVDWE approach, which rationalized our MD results. estimate the phase behavior of our system over a portion of

We complete this analysis here by adopting a differenthe parameter space much wider than that explored by nu-
approach with well-known limitations, but extremely fast in merical simulations.

VI. CONCLUSIONS

061504-6



LIQUID-LIQUID PHASE TRANSITION FOR AN... PHYSICAL REVIEW E 71, 061504(2005

Our findings, both with the MD and HNC approaches,the second virial coefficient is slightly negati{&1] around
show that only a limited number of combinations of potentialthe fluid-fluid critical point, from Eq(1) this would imply
parameters can be associated with a phase diagram with two> 0. We therefore expect that in general, for both large and
accessible critical points in the fluid phase. A general conclushort repulsive (and attractive ranges, the condition
sion is that the repulsive component of the potential musin/(U,Vso) =0 would be verified for potentials with a phase

equilibrate the attractive component, i.e., that the strength Afjiagram with two critical points. This condition could be
attraction, related to the second virial coefficientAis=0, generalized to

leading to Eq(7). This equation gives us the intuitive under-

standing that the repulsive and attractive components of the * R

interaction potential compensate when the attractive volume, 1= 1U(UpVso | U(ndr= -2, 9
weighted by the attractive energy, is equal to the repulsive 0

volume, weighted by the repulsive energy. for a continuous isotropic attractive potentidir) with a

For wg>a the MVDWE predictions forA=0 compare
well with the HNC resultdFig. 5(c)], and for largewg/wpa
Eq. (7) reduces to the simple E¢B), whose leading order is
3w,/ wr. Forwg<<a it is difficult to extract a clear relation
among the potential’s parameters. However, we note that Eq.
(5) shows a leading linear relation betweé&fk/U, and
wa/wg for wg<<a and wy<<a, suggesting that the liquid-
liquid phase transition could also be found in systems with We thank P. G. Debenedetti and F. Sciortino for fruitful
short repulsive range, if the attractive range is short as welldiscussions. G.F. acknowledges financial support from the

Finally, for small attractive range,/a the two fluid-fluid ~ Spanish Ministerio de Educacion y Cie¢Rrograma Ramon
phase transitions generated by this potential are metastabjeCajal and Grant No. FIS2004—-034%hd the allocation of
with respect to the crystdll5,19, consistent with what is computer resources from INFM Progetto Calcolo Parallelo.
expected on the basis of results for other short-range attratVe thank the NSF for financial support, through the compu-
tive potentials(see, e.g., Ref.1]). Since for all these short- tational chemistry program and the collaborative research in
range attractive potential$9], including the presenft60],  chemistry program.

soft-core repulsion, whera is an (effective hard-core dis-
tance andVg; is the soft-core volume defined i), both
possibly T dependenf62].
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